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4.3 EVALUATE THE DOUBLE INTEGRAL (REGION FORM) 
Fubini’s theorem:

If f is continuous on the rectangle

984 CHAPTER 15 MULTIPLE INTEGRALS

(b) Here we first integrate with respect to :

Notice that in Example 1 we obtained the same answer whether we integrated with
respect to or first. In general, it turns out (see Theorem 4) that the two iterated integrals
in Equations 2 and 3 are always equal; that is, the order of integration does not matter.
(This is similar to Clairaut’s Theorem on the equality of the mixed partial derivatives.)

The following theorem gives a practical method for evaluating a double integral by
expressing it as an iterated integral (in either order).

Fubini’s Theorem If is continuous on the rectangle 
, , then

More generally, this is true if we assume that is bounded on , is discontin-
uous only on a finite number of smooth curves, and the iterated integrals exist.

The proof of Fubini’s Theorem is too difficult to include in this book, but we can at least
give an intuitive indication of why it is true for the case where . Recall that if

is positive, then we can interpret the double integral as the volume of
the solid that lies above and under the surface . But we have another for-
mula that we used for volume in Chapter 6, namely,

where is the area of a cross-section of in the plane through perpendicular to the 
-axis. From Figure 1 you can see that is the area under the curve whose equation

is , where is held constant and . Therefore

and we have

A similar argument, using cross-sections perpendicular to the -axis as in Figure 2, shows
that
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Theorem 4 is named after the Italian mathema-
tician Guido Fubini (1879–1943), who proved a
very general version of this theorem in 1907. But
the version for continuous functions was known
to the French mathematician Augustin-Louis
Cauchy almost a century earlier.

FIGURE 1

a 

x 

0 

z 

x 
b 

y 

A(x) 

C 

Visual 15.2 illustrates Fubini’s 
Theorem by showing an animation of 
Figures 1 and 2.

TEC

FIGURE 2

0 y c 

x 

z 

y
d 

98876_15_ch15_p982-991.qk_98876_15_ch15_p982-991  8/5/11  4:21 PM  Page 984

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has 
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

More generally, this is true if we assume that f is bounded on R, f is discontinuous only on a finite number of 
smooth curves, and the iterated integrals exist.

Example 1 Evaluate the double integral ( )∫ ∫ −x y dydx3
R
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Example 2 Evaluate ( )∫ ∫ y xy dydxsin
R

, R = [1, 2] × [0, π].
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Example 3 Evaluate ( )∫ ∫ +x y dydx2
D

, Where D is the region bounded by the parabolas y = 2x2 &  

y = 1 + x2

Solution:
The parabolas intersect when 2x2 = 1 + x2, that is, x2 = 1, so x = −1. We note that the region D, sketched in 
Figure 4.1, is a type I region but not a type II region and we can write
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If is continuous on a type I region D such that

then

The integral on the right side of is an iterated integral that is similar to the ones we
considered in the preceding section, except that in the inner integral we regard as being
constant not only in but also in the limits of integration, and 

We also consider plane regions of type II, which can be expressed as 

where and are continuous. Two such regions are illustrated in Figure 7.
Using the same methods that were used in establishing , we can show that

where D is a type II region given by Equation 4.

Evaluate , where is the region bounded by the 
parabolas and .

SOLUTION The parabolas intersect when , that is, , so . We
note that the region , sketched in Figure 8, is a type I region but not a type II region and
we can write
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FIGURE 7
Some type II regions
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Since the lower boundary is y = 2x2 and the upper boundary is  
y = 1 + x2, Equation 3 gives
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If is continuous on a type I region D such that

then

The integral on the right side of is an iterated integral that is similar to the ones we
considered in the preceding section, except that in the inner integral we regard as being
constant not only in but also in the limits of integration, and 

We also consider plane regions of type II, which can be expressed as 

where and are continuous. Two such regions are illustrated in Figure 7.
Using the same methods that were used in establishing , we can show that

where D is a type II region given by Equation 4.

Evaluate , where is the region bounded by the 
parabolas and .

SOLUTION The parabolas intersect when , that is, , so . We
note that the region , sketched in Figure 8, is a type I region but not a type II region and
we can write
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As stated earlier, in the double integral with constant limits, the order of integration is immaterial, provided 
the limits of integration are changed accordingly. But in case of double integral with variable limits, the 
limits of the integration changes with the change in the order of the integration. The new limits are obtained 
by drawing a rough sketch of the region of integration. Sometimes in changing the order of integration, it 
is required to split up the region of integration, and the given integral is expressed as the sum of number of 
double integrals with the changed limits. The change of order of integration often makes the evaluation of 
double integrals easier.

Example 1 Change the order of integration in  
x dx dy
x yy

aa

2 2
0 +ÚÚ , and hence evaluate the same.

Solution: From the limits of integration, it is clear that the region 
of integration is bounded by x = y, x = a, y = 0 and y = a. Thus, 
the region of integration is DOAB (see Fig. 4.2), and this region is 
divided into horizontal strips. To change the order of integration, 
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If is continuous on a type I region D such that

then

The integral on the right side of is an iterated integral that is similar to the ones we
considered in the preceding section, except that in the inner integral we regard as being
constant not only in but also in the limits of integration, and 

We also consider plane regions of type II, which can be expressed as 

where and are continuous. Two such regions are illustrated in Figure 7.
Using the same methods that were used in establishing , we can show that

where D is a type II region given by Equation 4.
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divide the region of integration into vertical strips. The new limits of integration become y varies from 0 to 
x and x varies from 0 to a.
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Example 2 Change the order of integration in the following integral and evaluate: 
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Solution: From the limits of integration, it is clear that first the 
integration is to be performed w.r.t. y, which varies from y = 
(x2/4a) to y ax= 2 , and then w.r.t. x, which varies from x = 0 
to x = 4a. Thus, we have to first integrate along the vertical strip 
PQ which extends from a point P on the parabola y x a= 2 4/( )

(i.e., x ay2 4= ) to the point Q on the parabola y ax= 2  

( , )i.e. y ax2 4= . Then the strip slides from O to A (4a, 4a), the 
point of intersection of the two parabolas. To change the order 
of integration, divide the region of integration OPAQO into 
horizontal strips PQ which extend from P on the parabola y ax2 4= , i.e., x y a= 2 4/( )  to Q on the parabola 

x ay2 4= , i.e., x ay= 2 . Then this strip slides from O to A (4a, 4a), i.e., varies from 0 to 4a. Therefore,
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Example 3 Express as a single integral x dy dx x dy dx
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 Let R1 and R2 be the regions over which I1 and I2 are being integrated, respectively and are shown by the 
shaded region in Fig. 4.4(i). 
 Also from Fig. 4.4(ii), it is clear that 
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Example 4 Change the order of integration in I xy dy dx
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Solution: From the limits of integration, it is clear that 
the integration is to be performed first w.r.t. y which varies 
from y x= 2  to y x= -2  and then w.r.t. x which varies from 
x = 0  to x = 1. The shaded region in Fig. 4.5 is the region of 
integration. Divide this region into vertical strips. To change 
the order of integration, divide the region of integration into 
horizontal strips.
 Solving y x= 2  to y x= -2 , we get the coordinates of A 
as (1, 1). Draw AM ^ OY. The region of integration is divided 
into two parts, OAM and MAB.
 For the region OAM, x varies from 0 to y  and y varies 
from 0 to 1. For the region MAB, x varies from 0 to (2 – y) and 
y varies from 1 to 2. Therefore,
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Example 5 Change the order of integration in the double  
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X

Y

Solution: From the limits of integration, it is clear that the 
integration is to be performed first w.r.t. y which varies from 

y ax x= -2 2  to y ax= 2  and then w.r.t. x which varies from 
x = 0  to x a= 2 . To evaluate the given integral, take the elementary 

strip parallel to the y-axis and its lower end is on y ax x= -2 2 , 
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i.e., the circle x y ax2 2 2 0+ - = , and the upper end on y ax= 2 , i.e., the parabola y ax2 2= . Then the strip 
is moved parallel to itself from x = 0  to x a= 2 . Thus, the shaded portion between the parabola and the circle 
is the region of integration. To change the order of integration, first integrate w.r.t. x and then w.r.t. y. The 
elementary strip is taken parallel to the x-axis. To cover the whole shaded area the region has to be divided 
into following three parts, as shown in Fig. 4.6.

Region I: The strip extends from the parabola y ax2 2= , i.e., x y a= 2 2 , to the straight line x a= 2 . Then 
the strip is taken parallel to itself from y a=  to y a= 2  to cover the region I. Thus, the part of double integral 

in this region is given by I f x y dx dy
y a

a

a

a

1
2

22

2

= ÚÚ ( , ) .

Region II: The strip extends from the parabola y ax2 2= , i.e., x y a= 2 2  to the circle x y ax2 2 2 0+ - = , 

i.e., x a a y= - -2 2 . Then the strip is taken from y = 0  to y = a to cover the region II. Thus, the part of the 

integral in this region is given by I f x y dx dy
y a

a a ya

2
20 2

2 2

=
- -

ÚÚ ( , )
/

.

Region III: The strip extends from the circle x y ax2 2 2 0+ - = , i.e., x a a y= + -2 2, to the line x a= 2 . The 

strip is taken from y = 0  to y a=  to cover the region III. Thus, the part of the integral in this region is given 

by I f x y dx dy
a a y

aa

3

2

0 2 2

=
+ -

ÚÚ ( , ) . Therefore,

f x y dy dx
ax x

axa

( , )
2

2

0

2

2-
ÚÚ = + +

+ -

- -

ÚÚf x y dx dy f x y dx dy f x y dx dy
a a y

aa

y a

a a y

( , ) ( , ) ( , )
/ 2 22

2 2 2

02
ÚÚÚÚÚ

02

22

2

a

y a

a

a

a

/

EXERCISE PROBLEMS

4.4.1. Calculate the iterated integral

(i)  ( )∫ ∫ −x y x dydx6 2
0

4

0

2
2

  Ans: 222

(ii)  ( )∫ ∫ +
π

−
y y x dx dycos

3

3

0

2
2

  Ans: 18

(iii)  ∫ ∫ +





x

y
y

x dy dx 
1

4

1

2

  Ans: 21
2

In 2
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4.4.2. Calculate the double Integral

(i)  π π{ }( ) ( )∫ ∫ − = ≤ ≤ ≤ ≤x y dA R x y x ysin , , | 0 2 , 0 2R

  Ans: 9
4

(ii)  ∫ ∫
+

=   − 
xy

x
dA R x

1
, 0,  1 3,  3

R

2

2

  Ans: ( )−1
2

1 cos 1

(iii)  ∫ ∫ =  × 
−ye dA R, 0,  2 0,  3

R

xy .

  Ans: 0

4.5 EVALUATION OF DOUBLE INTEGRALS (POLAR FORM)
Introduction

To evaluate the double integral θ θ( )∫ ∫
θ

θ

f r dr d,  
r

r

1

2

1

2

 over the region R bounded by the curve 

r = r1, r = r2 & the straight line θ = θ1, θ = θ2.
We first integrate w·r to r (keeping θ constent) between the limits r1 & r2 & then integrating the new expression 
w·r to θ between the limits θ1 & θ2

θ θ θ θ( ) ( )∴ ∫ ∫ = ∫ ∫
θ

θ

f r drd f r dr d,   ,  .
R r

r

1

2

1

2

Example 1 Evaluate r dr d3 qÚÚ , over the area bounded between the circles r = 2 cos q and r = 4 cos q. 

Fig. 4.7

q
O

P

Q

Y

X

q = � p
2

q = p
2 r = 2 cos q r = 4 cos qSolution: The shaded region in Fig. 4.7 is the region of 

integration R. Here, r varies from 2cosq  to 4 cos q and q 
varies from –p/2 to p/2. Therefore,

r dr d r dr d
R

3 3

2

4

2

2

q q
q

q

p

p

=ÚÚ ÚÚ
- cos

cos

/

/

 =
-
Ú

r d
4

2

4

2

2

4
cos

cos

/

/

q

q

p

p

q

= -
-
Ú

1
4

256 164 4

2

2

( cos cos )
/

/

q q
p

p

d
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 =
-
Ú60 4

2

2

cos
/

/

q q
p

p

d

 = Ú120 4

0

2

cos
/

q q
p

d  [\ cos4 q is an even function of q]

 = ¥ ¥
¥

¥ =120 3 1
4 2 2

45
2

p p

Example 2 Evaluate rdr d

a r

q
2 2+

ÚÚ  over one loop of the  

lemniscate r a2 2 2= cos q .

Solution: The region of integration R is covered by radial strips 
whose ends are r = 0  and r a= cos2q . The strips start from 
q = –p /4 and end at q = p /4. Therefore,

Fig. 4.8

O
X

q = /4p

r a= cos 2÷ q

q = � /4p

rq

R

ardr d

a r
a r r dr dÚÚ ÚÚ

+
= + ◊-

-

q q
q

p

p

2 2
2 2 1 2

0

2

4

4 1
2

2( ) /
cos

/

/

               

= ◊ +È

Î
Í

˘

˚
˙

= + -

-
Ú

1
2 1 2

2

2 2 1 2

0

2

4

4

2 2 1 2

( )
/

[( cos )

/ cos

/

/

/

a r d

a a

a q

p

p

q

q aa d]
/

/

q
p

p

-
Ú

4

4

               = + - = -
--
ÚÚa d a d[( cos ) ] [( cos ) ]/ /

/

/

/

/

1 2 1 2 11 2 2 1 2

4

4

4

4

q q q q
p

p

p

p

               = - = - = -ÚÚ
-

a d a d a( cos ) ( cos ) [ sin ]
/

/

/ /

2 1 2 2 1 2 2
0

4

4

4

0

4

q q q q q q
p

p

p p

               = ◊ -È
ÎÍ

˘
˚̇

= -Ê
ËÁ

ˆ
¯̃

2 2 1
2 4

2 1
4

a ap p
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EXERCISE 

 1. Evaluate the following by changing the order

 (i) ( )∫ ∫ +
−

x y dx dy 
y

0

3

1

4

  ANS: 241
60

 (ii) ∫ ∫
−

y dy dx 
x

0

1

1

1
2

2

  ANS: π
16

 (iii) ∫ ∫ xy dy dx  
x

x

0

1

.  ANS: 1
24

4.6 AREA ENCLOSED BY THE PLANE CURVE
Cartesian form

Let AB and DC be two curves y = f1(x) and y = f2(x) respectively. Also Let AD and BC be the ordinates x = x1 
and x = x2 respectively. Then the area enclosed by the curves y = f1(x) and y = f2(x)
And ordinates x=x1 and x = x2 is ABCD.

Area ABCD = ∫∫
=

=

dy dx
y f x

y f x

x

x

( )

( )

1

2

1

2

Example 1 Show that the area between the parabolas y ax2 4=  and x ay2 4=  is 16
3

2a  using double 

integration. 

Solution: Solving the equations y ax2 4=  and x ay2 4= , we can see 
that the parabolas intersect at O( , )0 0  and A a a( , )4 4 . For the shaded 
region between these parabolas (Fig. 4.26) x varies from 0 to 4a and 
y varies from P to Q, i.e. from y x a= 2 4/  to y ax= 2 . Therefore,

Required area = ÚÚ dy dx
x a

axa

2 4

2

0

4

/

= -Ú ( / )2 42

0

4

ax x a dx
a

  

  

= ◊ - ◊
È

Î
Í

˘

˚
˙ = - =2 2

3
1

4 3
32
3

16
3

16
3

3 2
3

0

4
2 2 2a x

a
x a a a

a
/

Fig. 4.9

Q

L M

P
drrdq

O
X

q

dq
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Example 2 Find the smaller of the areas bounded by the ellipse 4 9 362 2x y+ =  and the straight line 
2 3 6x y+ = .

Solution: The equation of the ellipse is x y2 2

9 4
1+ =  (1)

and the line is x y
3 2

1+ =   (2)

Both meet the x-axis at A(3, 0) and y-axis at B(0, 2).
Using horizontal strips, the required area lies between

 x y x y= - = -3
2

2 3
2

4 2( ),  and y y= =0 2,

\ Required area = = -( )
-( )

-( )

-

ÚÚÚ dx dy x dyy

y

y

y

[ ] /

/

/

/

3 2 2

3 2 4

0

2

3 2 2

3 2 4

0

2 2
2

  

= - - -È
ÎÍ

˘
˚̇

=
-

+ - +
È

Î
Í
Í

˘

˚
˙
˙

Ú

-

3
2

4 2

3
2

4
2

4
2 2

2
2

2

0

2

2
1

2

y y dy

y y y y y

( )

sin
00

2

 

= - + = ◊ -Ê
ËÁ

ˆ
¯̃

= --3
2

2 1 4 2 3
2

2
2

2 3
2

21[ sin ] ( )p p

Example 3 Find the area enclosed by the ellipse + =x
a

y
b

1
2

2

2

2

Solution:
The area of the ellipse = 4(area of the ellipse in the first quadrant)

∵

dy dx

y dx

b x
a

dx

b a x
a

dx

b a x
a

dx

b
a

a x dx

b
a

a x
a

x a x a x dx a x
a

x a x

b
a

a a
a

b
a

a ab

Area of the first quadrant 

. 1

.

.

.

2
sin

2 2
sin

2

2
sin

2 2 4

b x
aa

b x
a

a

a

a

a

a

a

0

1

0

. 1

2

2

2 2

2

2 2

2

2 2

2
1 2 2

0

2 2
2

1 2 2

2
1

2

2

2

0

2

2

0

0

0

0

0

∫∫

∫

∫

∫

∫

∫

∫

π π

=

=  

= −












= −











= −











= −





=








+ −









 − =









+ −











=


















 =









 =











−

−

− −

−

Fig. 4.10

O
X

P

Q

4a

A a a(4 , 4 )

x
a
y

2 =
4

y ax
2 = 4

Y

4a

Fig. 4.11

O

Y

X
A(3, 0)

B(0, 2)
x y= 4 �÷ 23

2x

y

=
(2 �

)

3
2

Fig. 4.12

y

x
A0

B

x = 0

y = 0

x2

a2y = b√ 1 − 
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∵

dy dx

y dx

b x
a

dx

b a x
a

dx

b a x
a

dx

b
a

a x dx

b
a

a x
a

x a x a x dx a x
a

x a x

b
a

a a
a

b
a

a ab

Area of the first quadrant 

. 1

.

.

.

2
sin

2 2
sin

2

2
sin

2 2 4

b x
aa

b x
a

a

a

a

a

a

a

0

1

0

. 1

2

2

2 2

2

2 2

2

2 2

2
1 2 2

0

2 2
2

1 2 2

2
1

2

2

2

0

2

2

0

0

0

0

0

∫∫

∫

∫

∫

∫

∫

∫

π π

=

=  

= −












= −











= −











= −





=








+ −









 − =









+ −











=


















 =









 =











−

−

− −

−

The area of the ellipse = 
π π









 =ab ab4

4  sq.units

Example 4 Find the area between the parabola x2 = 4y and the straight line x − 2y + 4 = 0

Solution:
Solving the equations x2 = 4y and x − 2y + 4 = 0,
Point of intersection is (4, 4) and (−2 , 1)
Limits of x: x = –2 and x = 4

Limits of y: =y x
4

2

and = +y x 4
2

∫∫

∫

∫

=

=  

= + −










= + −










=

+

−

+

−

−

−

dy dx

y dx

x x dx

x x x

Area

4
2 4

4
2

12

9 sq. units

x

x

x

x
4

4
2

2

4

4

4
2

4

24

2 3

2

4

2

2

2

2

Fig. 4.13

y

x
0

(−2, 1)

   (4, 4)
x2  = 4y

2y  =
  x + 4
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Example 5 Find the area enclosed by the curve y2 = 4ax and the line x + y = 3a, y = 0.

Solution: 
To Find the intersection of x + y = 3a, y = 0.
Both intersecting at (3a, 0)
To find the intersection of the line x + y = 3a and the curve y2 = 4ax.
Both intersecting at (a, 2a)

Given x + y = 3a  (1)      
y2 = 4ax (2)
We have x + y = 3a
 y = 3a-x
Substitute y = 3a-x in (2)
We get x = a, x = 9a
Substitute x = a in (1)
We get y = 2a

Area split into two regions namely R1 and R2.

∫∫

∫

∫

∫

( )
( )

=

=

=

=

=

















=

=

dy dx

y dx

ax dx

a x dx

a x

a

Area of RI 

4

2

2
3
2

4
3

area of RI 9 sq. units

axa

axa

a

a

a

0

4

0

0

4

0

0

1
2

0

3
2

0
2

     

∫∫

∫

∫

( )

=

=

= −

= −
−











=

−

−

dy dx

y dx

a x dx

a x

a

Area of RI 

(3 )

(3 )
2

2

a x

a

a

a x

a

a

a

a

a

0

33

0

3
3

0

2 3

2

Area = Area of R1 +Area of R2

= +

=

a

a

4
3

2a

10
3

2
2

2

Fig. 4.14

y

x
0

R1 R2

   (a, 2a)

x  = a

B
x = 0

y = 0

y  =  √ 4a x

y  =  3a − x
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4.7 AREA ENCLOSED BY THE PLANE CURVE (POLAR FORM).

Example 1: Find the area enclosed by the leminiscate r2 = a2 cos 2θ using double integration.

Solution: The area as shown in Fig. 4.15 is symmetrical in all 
the four quadrants. Therefore,

Required area = = ÚÚÚ4 4
2

2

0

2

0

4

0

2

0

4

r dr d r d
aa

q q
qpqp cos/cos/

         = = È
ÎÍ

˘
˚̇

=Ú2 2 2 1
2

22 2

0

4
2

0

4

a d a acos sin
//

q q q
pp

Example 2: Find the area lying inside the circle  
r = a sin θ and outside the cardioid  
r = a (1 − cos θ) using double Integration.

Solution: Eliminating r between the equations of two 
curves, sin cosq q= -1  or sin cosq q+ = 1
Squaring 1 2 1+ =sin q  or sin 2 0q =

\ 2 0q =  or p

or q = 0  or p
2

For the required area, r varies from a( cos )1- q  to 
asinq  and q varies from 0 to p/2. Therefore,

  Required area = r dr d
a

a

q
q

qp

( cos )

sin/

10

2

-
ÚÚ

   

=

= - -( )È
Î

˘
˚

Ú

Ú

-( )

r d

a d

a

a2

0

2

1

2 2 2

0

2

2

1
2

1

p

q

q

p

q

q q q

/

cos

sin

/

sin cos

   = - - +Ú
a d

2
2 2

0

2

2
1 2(sin cos cos )

/

q q q q
p

 = - + = - +È
ÎÍ

˘
˚̇

= -Ê
ËÁ

ˆ
¯̃Ú

a d a a
2

2 2

0

2
2

2
2 2 1

2 2
1 1

4
( cos cos ) .

/

q q q p pp

Fig. 4.15

O

X

q = /4p

r a= cos 2÷ q

q = � /4p

rq

Y

Fig. 4.16

O
X

q = 0

r a= sin q

r a= (1 � cos )q

Y

q = p
2
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Example 3:  Find the area of the region outside the inner circle r = 2 cos θ & inside the outer circle  
r = 4 cos θ.

Solution:
Limits of r = 2 cos θ to 4 cos θ

Limits of θ = θ to π
2 .

∵ �

r dr d

r d

d

d

xdx n
n

n
n

n

Area 2

2 2
2

2
2

16 cos 4 cos

12 cos  

12 1
2 2 cos 1 3

2
1
2 2

3 .                               even

n

0

/2

2 cos

4 cos

0

/2

2 cos

4 cos

0

/2
2 2

0

/2
2

0

/2

∫ θ

θ

θ θ θ

θ θ

π π

π

( )

( )

= ∫

= ∫ 





= ∫ −

= ∫

= ⋅








 ∫ = − ⋅ −

−











= −

π

θ

θ

π

θ

θ

π

π

π

Example 4 Find the area of the cardioid r = a (1 + cos θ)

Solution:
Area = ∫∫ rdrd θ taken over the cardioid. r = a (1 + cos θ)
limits of r = 0 to r = a (1 + cos θ)
limits of θ = − π to π

Area r dr d

r d2
2

a

o

a

0

1 cos

1 cos

∫ θ

θ

= ∫

= ∫ 





π

π θ

π

π θ

( )

( )
−

+

−

+

 

∵

a d

a d

a d

a y dy

a y dy

a

a

2 1 cos

2
2 2 cos 2     1 cos 2 cos 2

4 cos 2

4 cos 2 

cos  

8 3
4

1
2

π
2

3
2

π sq units

2 2

2

0

2
2

2

2

0

4

2 4

0

/2

2 4

0

/2

2

2

∫

∫
∫

θ θ

θ θ θ θ

θ θ

( ) ( )
( )

( )

= +

= ⋅ ∫ + =

= ∫

=

=

= ⋅ ⋅





= ⋅

π

π

π

π

π

π

−

r = 4 cos θ

r = 2 cos θ

r = a ( 1 + cos θ )


	Unit I
	Unit II
	Unit III
	Unit IV
	Unit V
	225-228
	229-232
	233-242
	243-246
	247-252
	253-260
	261-268
	269-276
	277-284
	285-290
	291-298




